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Abstract
Origami and kirigami are becoming increasingly more prevalent in robotic systems due to their
elegant manufacturability and pseudo-compliant behavior. However, origami-enabled robotic
systems are currently designed in an inefficient ad hoc manner due to the complexity of
synergistically incorporating compliant origami structures into a system level model. This paper
develops a system level dynamic model for the locomotion of an origami-enabled crawling
robot. An energy analysis of the primary mechanical components of the robot yields a one-
dimensional (1D) equation of motion (EOM) for the robot. The EOM is extended to two
dimensions (2D) using a geometric analysis of the origami structures and the constraints imposed
by the robotic system. The 2D model is able to represent the robot’s forward and directional
locomotion. The results of the dynamic model are compared to a kinematics-based model and
experimental results. The 2D dynamic model performs similar to the kinematic model of the
robot for small forward expansions, but the dynamic model demonstrates superior tracking of the
robot locomotion for larger expansions as the system losses increase. The maximum error
reported between the dynamic model and experimental results is 10% compared to the 40% error
reported for the kinematic model. The paper concludes with a demonstration of how the dynamic
model can be used to select the robot design parameters. This paper presents a much-needed
framework for the design of origami-enabled robots that can also lead to advances in the control
of compliant and pseudo-compliant robots.

Supplementary material for this article is available online

Keywords: origami robots, multistable origami, model-based design, kresling origami, crawling
robots

(Some figures may appear in colour only in the online journal)

Nomenclature

b Rotation of single cell model at origami
relief cuts

Fcell Force applied by single origami cell

Ftower Force applied by origami tower

kbellows Stiffness of bellows structure

lplate Distance between origami towers at end
plates

m Mass of crawling robot front plate

f Rotational input to origami

fL Rotational input to left origami tower of robot

fR Rotational input to right origami tower of robot

r Length of link formed by two adjacent origami
cells

m Friction coefficient of robot feet

X Global lateral robot expansion

Xf Position of robot front plate centroid in X
direction

y Forward robot expansion for single cell model

y0
Initial bellows offset
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Y Global forward robot expansion

Yf Position of robot front plate centroid in Y
direction

1. Introduction

Recent interest in employing origami and kirigami as com-
ponents in robotic systems stems from their elegant manu-
facturability and pseudo-compliant behavior [1]. While much
effort has been extended towards developing geometric and
mechanical models for individual origami structures, very
little work has been done to quantitatively establish models
for origami-enabled robots that synergistically integrate the
origami structures into a system level model [2]. This paper
establishes a model for the locomotion of a crawling robot
enabled by multistable origami structures through an invest-
igation of the system level dynamics of the robot. The
crawling robot considered in this paper [3] is a case study for
a modeling framework that can be generalized to other ori-
gami-enabled robotic systems. The paper also demonstrates
how the model can be used to efficiently tune the robot design
parameters and replace the ad hoc methods currently used to
design complex origami-enabled robotic systems.

Many techniques have been developed for modeling the
kinematics of origami structures, including the Miura-Ori
pattern [4–7], the Kresling pattern [3, 8, 9], and the water-
bomb unit [10]. In addition to the kinematics of origami
structures, there has been significant focus directed towards
the actuation of origami structures using pneumatic actuation
[10, 11] and smart actuators such as shape memory alloys
[2, 12, 13]. These actuation methods have been studied for
both the locomotion and self-folding of origami-enabled
robots [14–16]. However, after an extensive review of ori-
gami-enabled robots, Rus and Tolley have determined there is
a need for realistic physical models that can better inform the
control algorithms of origami-enabled robots for task execu-
tion [1]. Zhakypov and Paik, who have developed a sys-
tematic design methodology for building origami-inspired
robots, similarly concluded there is a lack of standard models
for origami-enabled robots that can be synergistically inte-
grated into a design tool for origami robotic systems [2].

This paper addresses the need for a system level model of
origami-enabled robots that can be used to aid in the design of
the robotic systems. The paper begins with an overview of the
origami-enabled robotic platform, Peri and a breakdown of
the robot’s primary locomotion components. Hamilton’s
equation is used to derive an equation of motion (EOM) for
the robot, and the robot locomotion predicted by this dynamic
model is compared to the locomotion predicted by a kine-
matic model of the robot. The dynamic model results are
validated against experimental measurements for both for-
ward (one-dimensional (1D)) and directional (two-dimen-
sional (2D)) locomotion. The paper concludes with a
discussion of how the dynamic model can be used to effi-
ciently tune the robot design parameters to achieve desired

performance requirements, creating a much-needed frame-
work for the design of origami-enabled robots.

2. Characterization of robotic platform components

The dynamic model developed in this paper is tailored for the
origami-enabled crawling robot, Peri [3]. Peri is a bio-inspired
pseudo-compliant robot that mimics the anterograde loco-
motion of the caterpillar. The primary mechanical locomotion
components of Peri are identified in figure 1(a). Two rigid end
plates are linked by origami towers actuated independently
using servo motors. By nature of the Kresling origami pattern
[3], the towers expand and contract as a rotation is applied to
one end of the towers, with the other end fixed. Figure 1(b)
shows an origami tower of Peri constructed from six origami
Kresling cells. Two origami towers in parallel allow for
directional locomotion (i.e. left and right turning). A trans-
parent PTE bellows structure supplies torsional rigidity
between the front and back plates and provides protection for
the origami towers. Anisotropic feet allow the robot to expand
and contract with no backwards slipping [17].

While the design of Peri has been detailed in [3, 17], the
primary components of the robot have not been characterized
individually. Thus, three experiments have been conducted to
characterize the origami towers, bellows structure, and ani-
sotropic feet of the crawling robot.

Figure 1. (a) Rendering of the origami-enabled crawling robot, Peri.
The primary mechanical locomotion components of Peri include two
rigid plates connected by two origami towers actuated independently
using servo motors. Anisotropic feet allow the robot to move
forward without slipping as the origami towers expand and contract.
(b) Origami tower of Peri constructed from 6 origami Kresling cells.
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2.1. Origami towers

The origami towers that enable the crawling locomotion of
Peri are constructed from six repeating cells of the Kresling
origami pattern [3]. Each Kresling cell exhibits the force-
displacement behavior presented in figure 2(b), obtained
using a universal testing machine. A fixture that allows one
end of the cell to rotate during expansion was used to mount
the cell to the universal testing machine as shown in
figure 2(a).

The cell was pulled with a constant velocity of 1 mm s−1,
and the corresponding reaction force was measured (see sup-
plementary video M1, available online at stacks.iop.org/SMS/
29/015013/mmedia). The energy profile of the cell presented
in figure 2(b) was obtained by numerically integrating the
force-displacement data measured by the universal testing
machine. The energy profile shows the bistability of the
Kresling cell, with two stable equilibrium positions at (1) and
(2). The unstable equilibrium where the energy is a maximum
(3) represents the cell critical height at which snap through
occurs, indicated by a measured force value of zero (4).

2.2. Bellows structure

The primary functions of the bellows structure are to provide
torsional rigidity to the crawling robot and protect the origami
towers. The free length of the bellows is greater than the
maximum distance between the front and back plates of the
robot during expansion. This indicates that the bellows
always operates under compression and assists the forward

locomotion of the robot. The force-displacement behavior of
the bellows structure was determined experimentally by
applying weights to the bellows and measuring the resulting
compression, as shown in figure 3(a). While the bellows
reponse was nonlinear as shown in figure 3(b), the displace-
ment represented by the operating range of the crawling robot
was reasonably approximated as linear. The average bellows
stiffness from the linear operating range of the structure was
measured across three trials to be 10.5 Nm−1.

2.3. Anisotropic feet

The expanding and contracting locomotion of Peri is enabled
by anisotropic feet allowed to pivot about a central axle as
shown in figure 4. As the robot expands, the hind feet rotate
to a high friction surface to prevent the robot from slipping
backwards, while the front feet rotate to a low friction surface
to allow expansion. Similarly, as the robot contracts, the front
feet rotate to the high friction surface and the hind feet rotate
to the low friction surface, allowing the back plate to contract
to the front plate with no slipping. The feet are 3D printed
using a Stratasys Objet printer from print materials Vero-
White (low friction) and TangoBlack (high friction).

Perfect stiction is assumed for the high friction material
to prevent backwards slipping. The coefficient of friction for
the low friction material was measured by placing a known
weight on a sample of the low friction material (VeroWhite)
and applying a lateral force in the forward locomotion

Figure 2. (a) Characterization of a Kresling cell using a universal
testing machine with a fixture that allows for rotation of one end of
the cell. A constant displacement was applied to expand the cell, and
the corresponding force was recorded. (b) Measured force–
displacement profile that demonstrates the bistability of the cell. The
energy, a numerical integral of the force data, shows the two stable
equilibrium positions of the cell (1) and (2), the unstable equilibrium
(3), and the snap through height where the force is zero (4).

Figure 3. (a) Bellows structure characterization setup. Discrete
weights were applied to compress the bellows (free length of
130 mm), and the resulting displacements were measured using the
scale shown. (b) The bellows stiffness of 10.5 N m−1 was calculated
from a linear fit of the experimentally determined operating range.
Loads and displacements were defined positive downwards, and the
force-displacement data represents the mean of 3 trials.
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direction. The applied force required to overcome static
friction and the normal force were used to determine the
coefficient of friction using a Coulomb model. The measured
static coefficient of friction for VeroWhite is 0.51.

3. Dynamic model formulation

The dynamic model of Peri is developed from an energy
analysis of the mechanical components of the robot char-
acterized in section 2. Figure 5(a) shows an idealized model
of the crawling robot during expansion, where the back plate
is fixed, and the system forces are applied to the robot front
plate of mass m.

The bellows structure is modeled as an undamped linear
compression spring with stiffness k ,bellows and all structural
damping is considered negligible. Ffriction is the external force
applied to the front plate by the low friction material of the

robot feet. The static coefficient of friction measured in
section 2.3, m = 0.51, is used for both the static coefficient of
friction and as a conservative estimate of the kinetic coeffi-
cient of friction for the model formulation. Each origami
tower is represented by the position dependent force, F ,tower

applied to the front plate, and X and Y are the transverse and
longitudinal positions of the front plate, respectively. The
model assumes that the forward displacement of the front
plate, referred to as expansion, is equivalent to the forward
locomotion of the robot and that contraction is a perfect
reversal of expansion.

3.1. Single cell model

Due to the metameric nature of the origami towers, a model is
initially developed for the dynamic response of a single ori-
gami cell. Figure 5(b) is the idealized model for a single ori-
gami cell of the robot. Each cell belongs to one origami tower,
and each tower is idealized to apply a force to one half of the
front plate. Thus, for the single cell model, each Kresling cell is
assumed to apply a force directly to one half of the front plate
that is transmitted through all other Kresling cells. Similarly,
only one half of the friction force and one half of the bellows
stiffness are considered. In figure 5(b), y is the position in the
direction of forward expansion for a single origami cell of the
robot, and x is the transverse position for a single origami cell.

3.1.1. Single cell model design. The EOM for the origami-
enabled crawling robot is obtained from an energy analysis of
the primary locomotion components using Hamilton’s
equation

ò d d- + =T V W dt 0, 1
t

t

nc
1

2

[ ( ) ] ( )

where T and V are the kinetic and potential energy of the
system, respectively, and Wnc is the work from all
nonconservative forces acting on the system. The origami is
modeled as a position-dependent force applied to the robot
front plate and expressed by

=W F y y, 2cell cell ( ) ⁎ ( )

where F ycell ( ) is the force-displacement profile obtained for
the Kresling cell presented in figure 2(b). The friction force
applied to the robot front plate is modeled using a Coulomb
friction model

m=W
m

gy
2

, 3friction ( )

where g is the acceleration due to gravity, and m is the
coefficient of friction for the low friction material of the
anisotropic feet. The bellows is modeled as a linear spring
with potential energy

= +V k y y
1

4
, 4bellows bellows 0

2( ) ( )

where y0 is the initial bellows offset, which was determined
experimentally for Peri. Substituting the energy expressions
for the primary robot locomotion components given by
equations (2)–(4) into Hamilton’s equation yields the

Figure 4. Anisotropic feet allow sliding for forward robot
locomotion but prevent backwards slipping. The low friction
material has experimentally measured static coefficient of friction
m = 0.51. Perfect stiction (no slipping) is assumed for the high
friction material.

Figure 5. (a) Idealized model of the robot Peri during expansion,
where the back plate is fixed, and all loads are applied to the robot
front plate. The bellows is modeled as an undamped linear spring,
friction as a negative external force, and each origami tower as a
positive position-dependent external force. (b) Idealized schematic
of the single-cell model acting on half of the front plate mass, where
y is the front plate position for the expansion of a single origami cell.
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following EOM expressed in state space form:

m= + - +

5
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The EOM for the single cell model is solved using the
MATLAB solver ODE45. The solution is converted from a
function of time to a function of the servo input rotation, f,
using the angular velocity of the servo motors.

3.1.2. Single cell model results. Figure 6 presents the 1D
expansion of the robot front plate as a function of the rotation,
f, input to a single origami cell. The EOM given by
equation (5) is solved for various combinations of the robot
components to show the effect of each component on the
front plate expansion. The solution is first presented for only
the force of the origami cell applied to the robot front plate
(i.e. m = =k 0bellows ). The solution is then presented for only
the origami force and the bellows (i.e. m = 0), and then for
only the origami and friction forces (i.e. =k 0bellows ). The
solution for all components is used to construct the full robot
model in section 3.2.

As mentioned previously and presented in figure 3, the
bellows operates under compression for the full operating
range of the robot, meaning that the bellows assists the
forward locomotion of the robot. For the specific design
configuration of Peri, the bellows and friction terms nearly
cancel, making the solution for all components very similar to
that of just the origami force acting on the front plate.
However, this response would not necessarily be observed for
other parameter values or system design configurations.

3.2. Full robot model

3.2.1. Full robot model assembly. The Kresling origami cell
expands strictly in 1D for a given input rotation, f. To allow
for directional (2D) robot locomotion, relief cuts [3] are added

between every set of adjacent Kresling cells for the
construction of the origami towers of Peri as shown in
figure 7(a). Each relief cut is modeled as a pin joint, and each
set of adjacent Kresling cells is modeled as a variable length
rigid link, r ,j

 whose length is the summation of the single
cell model solution for the two cells of the link (i.e.
= +r y ycell cell1 1 2). Each link is defined at an angle bj from

the positive Y direction of the robot coordinate system, as
shown in figure 7(b).

Due to the boundary conditions of the origami towers,
the origami cells are assumed to snap from the center of the
towers, where the cells are the least constrained, outwards,
with one cell expanding completely before the next cell
begins to expand. This snapping order was confirmed through
several experimental observations (supplementary video M2).
The link lengths, r ,j are known from the input servo rotations,
the cell snapping order, and the single cell model results for
each cell. The link orientations, b ,j are determined using the
following vector loop equations in X and Y , respectively:

b b b b b

b b b

+ + - -

- + + =

r r r r r

r l l

sin sin sin sin sin

sin sin sin 0

6

1 1 2 2 3 3 4 4 5 5

6 6 7 7 8 8

( )

b b b b b

b b b

+ + - -

- + + =

r r r r r

r l l

cos cos cos cos cos

cos cos cos 0,

7

1 1 2 2 3 3 4 4 5 5

6 6 7 7 8 8

( )

subject to the constraints

b b b p= = - =2 0, 81 4 8 ( )/

b b b p= = + 2, 93 6 7 ( )/

Figure 6. Forward expansion of the robot front plate from a single
Kresling cell as a function of the input rotation f supplied to the cell.
The legend indicates each component included in the dynamic model
for the corresponding solution (i.e. for the Origami+Bellows case,
the ODE given by equation (5) is solved for m = 0).

Figure 7. (a) Origami tower constructed from 6 Kresling cells, with a
relief joint between every set of adjacent cells. Each relief is modeled
as a pin joint, and each set of adjacent cells is modeled as a rigid link
of variable length r .j The ends of the tower are constrained to be
perpendicular to the front and back plates of the robot. (b) Each link
rj

is at an angle bj with respect to the robot coordinate system X Y, .

The length of each link, r ,j corresponds to the single cell model
solution of the two cells that make up the link. X Y,f f represents the
global position of the robot front plate.
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and

b b= , 102 5 ( )

where b7 and b8 are the orientations of the front and back
plates, respectively, and = =l l 44 mm7 8 is the distance
between the left and right origami towers at the end plates.
Equations (8) and (9) constrain the ends of the origami towers
to be perpendicular to the end plates and define the robot
coordinate system, X Y, , at the center of the back plate as
shown in figure 7(b). Equation (10) is a geometric constraint
imposed by the vector loop design. The solution of the vector
loop analysis yields all bj and fully defines the front plate
position (X Y,f f ). The full robot model uses the single cell
model combined with the vector loop analysis to output the
2D position of the robot front plate, X Y, ,f f from the servo
rotations input to the left (fL) and right (fR) origami towers.

3.2.2. Full robot model results. Figure 8 presents the full robot
model results for forward (1D) expansion in the Y direction,
where fL=fR=f. Due to the assumption that the origami
cells snap one after another, the expansion profile of figure 8 is a
sequential repetition of the single cell model profile for all
components presented in figure 6. The forward expansion results
presented in figure 8 assume an identical cell snapping order for
the left and right origami towers of the robot.

The results of the full robot model for directional (2D)
expansion are presented in figure 9. Each path represents the
displacement of the robot front plate for one expansion of the
robot moving forward or turning left or right. The origami cell
snapping order is assumed to be from the center of the towers
outwards, and the turning profiles are given by fR=2fL and
fL=2fR for turning left and right, respectively.

4. Model validation and verification

The dynamic model results presented in section 3 are com-
pared to results from a kinematic model of the robot and

validated against experimental data collected from the robotic
platform, Peri.

4.1. Kinematic model

Figure 10 presents the kinematic model results for a single
Kresling cell. The kinematic model is produced from a geo-
metric analysis of the Kresling cell adapted from Pagano et al
[3, 18]. The kinematic model outputs the height of the
Kresling cell for a given input rotation applied to the cell, f,
considering only the geometry of the origami.

The single cell kinematic results presented in figure 10
are extended to the 1D and 2D expansion of the robot front
plate using the procedure detailed in section 3.2.1 in the same
manner as the dynamic single cell results.

Figure 8. Forward (1D) expansion in the Y direction for the full
robot model as a function of the servo motor rotations, f, where
fL=fR. The forward expansion profile assumes an identical
snapping order for the cells of the right and left origami towers.

Figure 9. Directional (2D) full robot model results for forward
expansion and left (fR=2fL) and right (fL=2fR) turning.

Figure 10. Kinematic model of the Kresling cell height as a function
of input rotation, f, applied to the cell, considering only geometry.

6

Smart Mater. Struct. 29 (2020) 015013 K Gustafson et al



4.2. Experimental setup

Experimental data was collected from the robotic platform
Peri using the setup shown in figure 11 and the servo motor
inputs given in table 1, where fL and fR are the angular
rotations applied by the servo motors to the left and right
origami towers, respectively, at an angular velocity of
120 rpm. This same angular velocity was used for all model
simulations.

With the back plate of the robot fixed, the 2D expansion
of the front plate (mass 66.2 g) was recorded by capturing the
position of markers on the end plates of the robot using a top
view camera, as shown in figure 11(a). The camera recorded
the front plate position in a stop-and-stare manner, with the
robot pausing after each servo input pair for data collection.
The servo input pairs are shown in table 1 (supplementary
videos M3, M4, M5).

4.3. Model and experimental results comparison

The 1D expansion results for the full robot dynamic model,
kinematic model, and experiment are presented in figure 12.
For small motor input rotations, the kinematic model
demonstrates greater accuracy tracking the robot locomotion.
However, as the robot expands further, the system losses
become significant, and the dynamic model agrees with
experimental values more closely than the kinematic model.
Figure 13(a) shows the 2D dynamic model results compared
to the kinematic model and experimental data.

Figure 13(b) shows the error of the dynamic and kine-
matic models at each expansion step compared to exper-
imental results. The error is defined as the distance between

the modeled and experimental front plate positions for a given
expansion step, expressed as a percentage of the maximum
robot expansion. For both forward expansion and turning, the
kinematic model demonstrates a greater tracking accuracy
than the dynamic model for low motor input rotations.
However, as the robot expands further and the system losses
increase, the kinematic model becomes increasingly inaccu-
rate, while the dynamic model error remains consistent.

5. Model-based design of robot parameters

The purpose of the dynamic model is to be used for model-
based design of origami-enabled robots. This section details
how the dynamic model developed for Peri can be used to
tune the robot design parameters to achieve desired perfor-
mance requirements.

Consider the stiffness of the bellows structure. As the
bellows stiffness is increased, the robot can achieve further
forward locomotion, as shown by the simulations run using
the dynamic model and presented in figure 14. However, the
increased forward locomotion is accompanied by a decrease
in the turning curvature of the robot.

This trade-off between forward locomotion and turning
curvature creates a Pareto front for the performance of the

Figure 11. (a) View of robot expansion from the perspective of the
camera. (b) System level experimental setup, where the robot back
plate was fixed for all tests, and data was collected in a stop-and-
stare manner using the markers on the end plates of the robot.

Figure 12. 1D expansion results for the full robot dynamic model
compared to experimental data and the kinematic model, where
fL=fR=f.

Table 1. Servo motor rotations for forward, left, and right locomotion
of the crawling robot, Peri. Each row corresponds to one step of the
robot between pauses for data collection, and fL and fR are the
servo motor inputs to the left and right origami towers, respectively.

Step # Forward Left Right

fL fR fL fR fL fR

0 0° 0° 0° 0° 0° 0°
1 50° 50° 25° 50° 50° 25°
2 100° 100° 50° 100° 100° 50°
3 150° 150° 75° 150° 150° 75°
4 200° 200° 100° 200° 200° 100°
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robot, for which the bellows stiffness can be tuned. For a
certain desired performance, the dynamic model Pareto front
presented in figure 14 can be used to select the ideal bellows
stiffness.

The same analysis is performed for the coefficient of friction
for the feet of Peri. Figure 15 is the Pareto front for the aniso-
tropic feet design, demonstrating that higher friction impedes the
forward locomotion of the robot, but allows for a tighter turning
radius. Once again, from the Pareto front, the ideal coefficient of
friction can be selected depending on whether a tight turning
radius or maximum forward expansion is more desirable.

6. Discussion and conclusions

The dynamic model developed in this paper is formulated
from an energy analysis of the origami-enabled crawling
robot Peri. While a kinematic model of the robot more
accurately tracks the robot locomotion for small forward
expansions, the dynamic model demonstrates superior loco-
motion tracking capabilities over the kinematic model as the
system losses increase.

The dynamic model performs effectively despite some
notable simplifications made in its formulation. The model
cannot consider the moment of inertia of the robot end plates,
because turning is achieved through the assymetric expansion
of single degree of freedom origami cells. In addition, the
model assumes that the robot contraction matches the robot
expansion, which is likely not a perfect assumption due to the
different masses of the robot end plates. This dynamic model
creates a framework with opportunities to be refined through
further theoretical considerations.

The dynamic model is shown to be beneficial in the
design of origami-enabled robotic systems and the tuning of
system parameters. Employing a dynamic model to select the
ideal design parameters for desired performance requirements
eliminates the ad hoc methods currently used to design

Figure 13. (a) 2D expansion results for the dynamic model,
kinematic model, and experiment. (b) Error of the dynamic and
kinematic models at each expansion step of the robot expressed as a
percentage of the maximum robot expansion, showing the superior
locomotion tracking of the dynamic model as the system losses
increase.

Figure 14. Dynamic model Pareto front of the bellows stiffness
trade-off between forward locomotion of the robot and the robot
turning curvature, where a higher bellows stiffness increases forward
locomotion but limits the robot turning curvature.

Figure 15. Dynamic model Pareto front of the friction trade-off
between forward locomotion of the robot and the robot turning
curvature, where a higher coefficient of friction allows for improved
robot turning radius but impedes forward locomotion.
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origami-enabled robotic systems, and can lead to more opti-
mal system designs in a more efficient and timely manner.

While the dynamic model developed in this paper is
tailored specifically for the robotic platform Peri, it establishes
a much-needed framework that can be extended to other
origami-enabled robotic systems. The ability to create a sys-
tem level model for origami-enabled robots that synergisti-
cally integrates the origami structure into the system
performance can lead to advances in the design and control of
pseudo-compliant origami-enabled robots.
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