
Smart Materials and Structures      

PAPER

A crawling robot driven by multi-stable origami
To cite this article: Alexander Pagano et al 2017 Smart Mater. Struct. 26 094007

 

View the article online for updates and enhancements.

You may also like
On-demand tuning of mechanical stiffness
and stability of Kresling origami harnessing
its nonrigid folding characteristics
Zhen Li, Vipin Agarwal, Liangmo Wang et
al.

-

Origami-based earthworm-like locomotion
robots
Hongbin Fang, Yetong Zhang and K W
Wang

-

The potential of DNA origami to build
multifunctional materials
Kosti Tapio and Ilko Bald

-

This content was downloaded from IP address 140.180.240.252 on 05/04/2024 at 16:35

https://doi.org/10.1088/1361-665X/aa721e
/article/10.1088/1361-665X/ace0eb
/article/10.1088/1361-665X/ace0eb
/article/10.1088/1361-665X/ace0eb
/article/10.1088/1748-3190/aa8448
/article/10.1088/1748-3190/aa8448
/article/10.1088/2399-7532/ab80d5
/article/10.1088/2399-7532/ab80d5
https://pagead2.googlesyndication.com/pcs/click?xai=AKAOjstXJ4uv8kESlGbhw4xwk_NaaIFao9Hraf_90zGd0P99M96yM0VYvGrDIzJ8Oi6mXmI7xXdwFK1wTCDvlaDrF3QOacWcuxxHO0xuJ1Wsprgm51FvuvcX_U6XTW1l0aIi8BNKI9E99rCpMaN83fM7G_OCKjvTj17HWj3ht9vdTtc7GBn_M1ym38-qndlbT3HR3eTb_vZ335XswU8E-jb2AgPW_0KhzOgKC8Mnc3xI71Uc4VWxF20x-pDn-Rtk2zKBlnrwcR1Vwi0Sm8u7Eo4h0zQvKzc6Nw0Y5WxgIN_5P7BIbLy7WijVWiMJcx8E42eEWbXZDBwAlMCAjMIeZkmzIIQ&sig=Cg0ArKJSzKq3j7_-O5a4&fbs_aeid=%5Bgw_fbsaeid%5D&adurl=https://ecs.confex.com/ecs/prime2024/cfp.cgi%3Futm_source%3DIOP%26utm_medium%3Dbanner%26utm_campaign%3Dprime_abstract_submission


A crawling robot driven by multi-stable
origami

Alexander Pagano, Tongxi Yan, Brian Chien, A Wissa and S Tawfick1

University of Illinois Urbana-Champaign, Urbana, IL, United States of America

E-mail: tawfick@illinois.edu

Received 27 January 2017, revised 18 April 2017
Accepted for publication 10 May 2017
Published 17 August 2017

Abstract
Using origami folding to construct and actuate mechanisms and machines offers attractive
opportunities from small, scalable, and cheap robots to deployable adaptive structures. This paper
presents the design of a bio-inspired origami crawling robot constructed by folding sheets of paper.
The origami building block structure is based on the Kresling crease pattern (CP), a chiral tower with
a polygonal base, which expands and contracts through coupled longitudinal and rotational motion
similar to a screw. We design the origami to have multi-stable structural equilibria which can be
tuned by changing the folding CP. Kinematic analysis of these structures based on rigid-plates and
hinges at fold lines precludes the shape transformation associated with the bistability of the physical
models. To capture the kinematics of the bi-stable origami, the panels’ deformation behavior is
modeled utilizing principles of virtual folds. Virtual folds approximate material bending by hinged,
rigid panels, which facilitates the development of a kinematic solution via rigid-plate rotation
analysis. As such, the kinetics and stability of folded structures are investigated by assigning suitable
torsional spring constants to the fold lines. The results presented demonstrate the effect of fold-
pattern geometries on the snapping behavior of the bi-stable origami structure based on the Kresling
pattern. The crawling robot is presented as a case study for the use of this origami structure to mimic
crawling locomotion. The robot is comprised of two origami towers nested inside a paper bellow,
and connected by 3D printed end plates. DC motors are used to actuate the expansion and
contraction of the internal origami structures to achieve forward locomotion and steering. Beyond
locomotion, this simple design can find applications in manipulators, booms, and active structures.

Supplementary material for this article is available online

Keywords: origami, bistability, active structures

(Some figures may appear in colour only in the online journal)

1. Introduction

We seek inspiration from natural systems which overcome an
incredible variety of challenges with simple, adaptive solutions
to make deployable and reconfigurable systems more adaptive,
less obtrusive, and more independent. Many diverse systems in
nature depend on the controlled actuation of flexible structures
through buckling instabilities for rapid motion in both predation
and locomotion [1–3]. For example, rapid motion of plants
demonstrates how categorically slow moving systems have
adaptively developed mechanisms that allow for fast motion [4].

The snap-buckling closure of Venus flytraps is due to the
reconfiguration from convex to concave curvature of its leaves,
driven by a change in turgor pressure. Due to geometric con-
straints, this curvature is coupled with a stretching deformation
mode that stores elastic energy which allows small perturbations
in curvature to result in large, rapid motion [1]. A similar
mechanism is used in the beaks of hummingbirds to produce a
fast-closing action at speeds unattainable by direct muscular
control. The pre-configuration of an anisotropically compliant
bone in the hummingbird beak allows for smooth flexion to a
strained position which is triggered to facilitate the fast expen-
diture of elastic energy as the beak snaps back to its closed
equilibrium state [3]. Buckling instability has also been shown to
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be a dominant feature of locomotion for uni-flagellated bacteria,
suggesting that the bi-stable actuation scheme is viable inde-
pendent of scale [2]. In this paper, we utilize origami as a
platform for the scale-free investigation of actuation based on the
buckling instabilities of thin, flexible features.

The outstanding number of natural creatures that utilize
folding highlights the potential of origami for a variety of
applications at different length scales. The investigation of nat-
ural folding yields a wealth of useful folding schemes, among
which are the ubiquitous Miura-ori pattern [5] and the Kresling
pattern [6] which is investigated here. These structures have
broad-reaching applications in deployable, rigidizable, and
multi-functional systems. Through the manipulation of ‘defect
states’ created by the buckling of thin sheets, origami also pro-
vides the framework for the development of reprogrammable,
mechanical metamaterials [7]. Simplistic tools for the modeling
of these structures such as rigid-panel analysis and the principles
of virtual folds enable facile investigation of their properties so
that the development of useful structures is straightforward [8].

The ability to produce a functional and geometrically
complex 3D mechanical system from a flat sheet introduces
exciting opportunities in the field of robotics for remote,
autonomously deployable systems or low cost integrated
locomotion. Self-folding origami robots have demonstrated
the viability of folded monolithic structures for a variety of
tasks [9–11]. For example, Rus, Wood and co-workers
demonstrated how self-assembly can be used to create a
deployable robot that folds itself from a flat sheet and walks
away [10] and the diversity of origami patterns which are
useful for locomotion [9]. The reconfigurable nature of ori-
gami systems often allows for a multitude of potential func-
tional folding schemes within a given structure. Moreover, in
a monolithic system where load-bearing structure and loco-
motion are facilitated by the same components, this re-
configurability lends itself to multi-model and multi-func-
tional design. For example, the Tribot ‘robogami’ is capable
of moving via both jumping and crawling locomotion by the
same actuation mechanism [12] which provides more
opportunities for success when navigating unpredictable ter-
rains. Multi-functional design facilitated by folded structures
has the potential to simplify robotics design through the
integrated use of coupled structural and actuation mechanisms
while decreasing both weight and fabrication costs.

A number of researchers have investigated the origami
structure discussed in this manuscript. Relevant contributions
and methods are discussed in the following literature review:
Kresling [6] presents the ‘Kresling pattern’ as the natural result
of twisting a paper cylinder until it buckles. This twist-buckling
causes the formation of curved fold lines which align well with
the crease pattern (CP) which takes its name from this discovery.
The folded geometry is investigated, but folding behavior is not
discussed. Wilson et al [13] presents an application for the
Kresling pattern as a deployable sunshade for telescopes. In this
work, the folding behavior is investigated using a simple wire-
frame model where fold lines are represented by rigid bars and
kinematically necessary deformation is determined from a sim-
ple strained link model as used in section 3. Cai et al [14]
investigated the rigid foldability of the Kresling pattern using the

quaternion rotation sequence method and determined that the
structure is not rigidly foldable between open and closed con-
figurations. Cai et al [15] also study the folding behavior of a
stack of building blocks as presented herein. In this work, a
wireframe model is used which approximates fold lines as bars
and determines the associated strains and nodal loads during the
folding evolution, similar to section 3. Each building block is
considered separately, and the buckling modes of the tower are
discussed.

In this study we demonstrate the design, analysis and fab-
rication of a bi-stable origami structure inspired by the Kresling
pattern. Through the coupling of rotational and linear motion,
this structure uses buckling instabilities to accomplish large-
stroke snapping motion from relatively small inputs. We
demonstrate the functional application of this mechanism in the
case study with a crawling robot that utilizes monolithic, multi-
functional design to realize locomotion from a single motor. The
work presented in this manuscript expands on the existing lit-
erature by investigating kinematically necessary deformation in a
physically realizable mode (bending). The use of virtual fold
lines allows for a simple representation of bending using dis-
cretized segments as in the rod and pin approach. Cuts are added
to the pattern to enable the folding of extreme tower geometries
which are not considered in the existing literature, therefore
stronger bistability is attained with the pattern including cuts.
Finally, the origami structure is proposed as an actuation
mechanism rather than a structural element alone, demonstrating
the validity of this structure for monolithic design. The
remainder of this paper is organized as follows: section 2 pre-
sents the design and mechanics of the origami structures;
sections 3 and 4 detail the kinematics of the origami structure
represented as rigid panels; section 5 presents the crawling robot
design and experimental results as a case study.

2. Design and mechanics of the origami

2.1. Geometric description of the origami structure

The origami structure can be uniquely defined by the three
parameters, n, R, and λ, which are the number of sides of
the basal polygon, the circumradius of the basal polygon, and
the helical angle ratio, respectively [16]. The angle ratio, λ, is
the ratio of the angle of the diagonal crease AB (figure 1(B))
to half the internal angle of the basal polygon. This helical
angle ratio determines the aspect ratio of the structure and the
degree of transformation during folding. It is bounded by
0.5 1.0 l where λ = 0.5 represents an origami height
H = 0 with indistinguishable open and closed states, con-
structed from two offset polygonal bases connected by tri-
angular panels. The upper bound where λ = 1.0 is a special
case where creases b and a are perpendicular. If and only if
λ = 1.0, the final height is given by H b l sin lq= = ( ) due
to the diagonal crease angle being equal to 180° (see figure 1
where λ = 0.8, and H b¹ ). λ > 1.0 simply indicates a
change in handedness/chirality, defined here as the direction
of rotation, α, which results in expansion of the structure.
From these parameters, the remaining fold lengths and angles
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are easily determined geometrically from the generic CP
(figure 1(A)) and basic polygon relations. The governing
equations used to create the CP for a specific structure are
given in equations (1)–(3), developed from [16].

The construction of the structure from the flat CP
(figure 1(A)) is accomplished by folding and rolling it into
polygonal prism such that points A and B overlap with A*

and B*, which results in the expanded or ‘open’ structure
(figure 1(B)). When a force is applied on the top of the
structure (while allowing free rotation), it twists and contracts
while exhibiting a snapping motion from the open to closed
positions as demonstrated in figure 2. This transformation is
non-rigid in that, in addition to the local folding of the
mountain and valley crease lines, elastic deformation of the
flat panels is required to complete the transformation. For

simplicity in discussion we will refer to the transition from
open to closed positions as ‘contraction’ and the inverse
transformation from closed to open ‘expansion’. Depending
on the value of λ, when the origami is fully folded, an internal
cavity is formed with some internal radius, ri. This internal
radius is characteristic of the polygon formed by the valley
folds when in the closed position, and is determined trigo-
nometrically from the same closed configuration used to
determine the crease length, l (equation (5), see figure 1(C)).
The geometric relations derived from figure 1(C) are listed in
equations (4), (5).

a R
n

2 sin , 1
p

= ⎜ ⎟⎛
⎝

⎞
⎠ ( )

b l a la2 cos , 22 2 1 2lq= + -( ( )) ( )/

Figure 1. Geometry of the origami structure. (A) The crease pattern (CP) for the polygonal prism origami structure shown in (B) which is
derived from the Kresling Pattern [6]. Mountain folds are shown as solid, red lines and valley folds are shown in dashed blue. The schematics
define the geometric parameters: n is the number of sides, a is the polygon side length, l is the diagonal valley-crease length, b is the side
panel length, the angle θ is half the internal angle of the basal polygon, and λ, the angle ratio, is a metric of transformation between open and
closed states and can vary between 0.5 and 1. (B) A hexagonal-based Kresling origami is constructed from the shaded pattern in (A) where
n = 6 and λ = 0.8. Variation in circumradius R results in scaling the size of this origami. Also shown is rotation angle, α, for rotation of the
top polygon about the dashed axis shown in (B). (C) Top down view of the structure shown in (B) while in its closed position. The crease
length of the diagonal valley-fold, l, is determined trigonometrically from this schematic. The internal radius, ri, of the cavity formed by the
valley-folds while in the closed position is also determined from this view. The rotation angle, α, is measured from the x̂-axis to the vector R
as shown. The x̂-axis is chosen to intersect the first vertex of the bottom polygon, labeled (A). The ẑ -axis points upwards along the axis of
rotation labeled α in (B), and the ŷ-axis follows the right hand rule convention.
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l R2 cos 1 , 4q l= -( ( )) ( )
r R sin 1 . 5i q l= -( ( )) ( )

When the origami is constructed from the CP into the
open position (figure 1(B)), its configuration is expressed by
its height, H, and the rotation angle, α, which describes the
rotation of the top polygon with respect to a frame fixed to the
bottom polygon. The chirality of the structure can be changed
by taking the mirror image of the CP in figure 1(A) reflected
about a vertical axis. The origami structure shown in
figure 1(B) has negative chirality but positive and negative
chirality are mathematically indistinguishable when con-
sidering the behavior of the structure during expansion or
contraction.

2.2. Foldability analysis for rigid origami

The CP for a single origami building block shown in
figure 1(A) is comprised of one row of n parallelogram
panels. This CP is rigid foldable, which indicates that the
polygonal prism can be constructed from a flat CP by simply
bending the fold lines without deforming the flat panels. This
rigid foldability can be confirmed by analyzing the number of
degrees of freedom (DOF) for the vertices,

NDOF 3, 6= - ( )

where N is the number of mountain or valley folds that meet
at a vertex [17]. In this system, each vertex has the same
N = 4 – 3 = 1 and for each unit cell, there will be n vertices in
series and therefore n NDOF 3CP = -( ) and the folding of a
sheet from a flat state to the polygonal prism in the open
configuration is possible by rigid folding. However, folding

from the open to closed configuration is not possible by rigid
folding as will be discussed in the following sections [17].
Following the creasing of mountain and valley folds, the
vertices corresponding to the 1st and nth panel (for example
A, B and A*, B* in figure 1(A)) are overlapped to create
the basal polygon. Notably, for λ > 0.5, the overlap can be
done in such a way to construct a bi-stable structure with
distinct open and closed shapes (inset figure 2). Once the
vertices are fixed to one another (e.g. by gluing), the formed
origami structure is kinematically rigid in both of these con-
figurations. This additional constraint, created by gluing the
vertices, fully defines the position of each vertex with respect
to its neighbor so that the structure no longer has available
DOF. In other words, if the panels are truly rigid, the
expanded polygonal prism having λ > 0.5 cannot be trans-
formed between states. If the panels are bendable, the poly-
gonal prism exhibits snapping between the expanded and
contracted configurations. However, it is not readily apparent
from the CP what the physical shape, as represented by the
values of height, H, and rotation angle, α, is at these stable
positions.

3. Kinematic analysis of rigid panels and folding
joints

To determine the configuration of the folded origami struc-
ture, a vector loop equation for the closed loop, RBA, RBC,
RDC, RDA, was solved numerically using a custom Python
program.

R R R R 0, 7BA BC DC DA- + - = ( )

R R x R y H z1 cos sin , 8BA a a= - + + + ( ) ˆ ˆ ( )

R R x R y zcos sin 0 , 9BC a a= + + ˆ ˆ ( )

R R
n

x R
n

y zcos
2

sin
2

0 ,

10

DC a
p

a
p

= + + + + ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠ˆ ˆ

( )

R R
n

x R
n

y

H z

1 cos
2

sin
2

.

11

DA a
p

a
p

= - + + + +

+ 

⎜ ⎟ ⎜ ⎟
⎛
⎝⎜

⎛
⎝

⎞
⎠

⎞
⎠⎟

⎛
⎝

⎞
⎠ˆ ˆ

( )

The following constraints were used to attain the num-
erical solution for height and rotation in the initial position,
i.e. open:

(1) The angle between vectors RBD and RDA is λθ

R R la cos . 12BD DA lq⋅ = -( ) ( ) ( )

Figure 2. Change in origami height, H, calculated as a function of
rotation angle, α, to demonstrate contraction of the origami. Height
is plotted for values of angle ratio, λ, spanning its range of 0.5< λ �
1.0 to demonstrate the effect of λ on the extent of transformation
during contraction. Note that as λ approaches 0.5, origami height
and rotation vary less between initial (open) and final (closed) states
than for larger values of λ.
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(2) The fold AD is a rigid line represented by a vector RDA

with magnitude l

R l. 13DA =  ( )

Using the Newton–Raphson method, the constraint
equations are numerically solved by systemically varying the
components of the vector loop vectors until the correct
solution was found. In this way, the initial rotation angle was
determined by solving the first constraint, which was then
used in conjunction with the second constraint to determine
the structure’s initial height. Once the open configuration was
defined, the final rotation was determined geometrically from
the closed position where H = 0 by definition. As previously
stated, folding from the open to closed position requires some
non-rigid deformation of the CP. To investigate the behavior
of the structure during expansion and contraction we mathe-
matically allowed the length of vector RBA (equivalent to
RDE) to vary throughout folding. This introduces an addi-
tional degree of freedom that allows the model to smoothly
transition from open to closed positions, thus conceptually
simplifying the expression of deformation to a single
dimension. Therefore, the kinematically necessary deforma-
tion can be quantified by simple strain as a function of tower
parameters such as λ. Contraction was then simulated by
stepping from initial to final rotation angles with equal step
size. Height was then determined at each rotational step to
fully define the configuration of the structure during expan-
sion or contraction. The parameter of ‘rotation’ was specifi-
cally chosen as the input here since it is a relevant input for
the motor-driven locomotion of the case study.

The degree of deformation required for folding, which, as
discussed later, is a direct measure of the bistability of the
system, can then be quantified by calculating the theoretical
change in free length RBA (figure 3). However, this simple

strain is not representative of the observed deformation. Our
physical paper models realize the additional degree of free-
dom through the use of relief cuts along folds AB. These cuts
allow the length of RBA to vary through the bending of
adjacent panels so that corners A and B contract in the
z-direction. This bending describes the motion of physical
models better than simply strained links—as the primary
deformation mode of paper is bending not stretch—and can
be modeled as the bending of the triangular panels ABD and
AED on either side of the diagonal valley-fold AD.

4. Kinematic analysis including virtual folds

To account for panel bending, a ‘virtual fold’ can be mathe-
matically created between 2 vertices across a bending panel
[8, 18]. Virtual fold assumes that mathematical fold lines can
be added to represent the ‘hidden’ DOF associated with the
out of plane bending modes in kinematically rigid panels. To
capture the bending behavior observed experimentally, virtual
folds are placed along RFD and RF′A for each panel as shown
in figure 4. In this way, each panel was divided into triangular
facets AFD, BFD, AF D,¢ and AF E¢ whose surface normals
are parallel when panels are unbent (i.e. open and closed
configurations, figure 2) and have a non-zero scalar product
during bending (figure 5). Triangular facets AF D¢ and AF E¢
can be represented as rotations of facets AFD and BFD and
are therefore mathematically redundant. To simplify this
discussion we will only consider the bending of virtual
fold FD.

The position of the virtual fold was chosen to emulate the
conditions observed in physical models, but could be given
any arbitrary position. At each step during contraction, the
vertex of the virtual fold line which lies at point D on the top

Figure 3. (A) The origami structure shown in the open position, where the vertices and representative vectors used in the vector loop equation
are shown. The thick black lines represent the nth panel, of which the triangular ‘unit cell’ ABD is sufficient to determine the motion of the
structure during contraction or expansion. All other positions can be determined through arbitrary rotations. The structure shown represents
R = 30 mm, λ = 0.8 and n = 6. (B) Theoretical strain in vector RBA as a function of rotation is plotted here for several values of angle ratio,
λ, to demonstrate the effect of λ on the bi-stable behavior of the tower. Theoretical strain is given here as a metric for the extent of
deformation required for expansion or contraction of the structure between kinematically allowable open and closed positions. As the angle
ratio, λ, increases, the theoretical strain increases so that more deformation is required for higher values of angle ratio.
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polygon remains fixed, while vertex at F is free to move
according to the following constraints:

(1) The sides of the virtual facets must sum to the crease
length, b, as defined in the CP (figure 1(A)) and
equation (2). Each side has fixed length according to the

rigid-panel assumption.

R R b. 14FA BF+ =  ( )

(2) The virtual fold length, R ,FD  is fixed throughout
contraction. This fold length, ld, is determined from the
open configuration (figure 3(A))

R l . 15FD d=  ( )

(3) The extent of out of plane deflection is determined
trigonometrically from triangle ABF where the change
in length RBA is given by the strain (figure 3(B)) while
the lengths of RBF and RFA are fixed.

These constraint equations were numerically solved
using the Newton–Raphson method as before. This allows for
the position of each vertex to be determined at every step of
expansion or contraction. From this, the fold angles can be
determined by the scalar product of the surface normals of
each facet (figure 5).

For the nth panel of an n-sided polygonal prism repre-
sented as ABDE we need only consider the fold angles of the
folds, BD, FD and AD to characterize the entire structure
since all other folds are rotationally symmetric. To analyze
the potential energy associated with the origami snapping
motion, torsional springs can be attached to the virtual fold
lines to calculate the restoring force resulting from the
bending of each triangular panel. This kinetic treatment is
used to investigate the bistability of the structure.

4.1. Analysis of the origami bistability

By treating fold lines as torsional springs where the crease
lines given by the CP have a different spring constant than the
virtual folds which approximate panel bending, all of the
material properties can be condensed into a single non-
dimensional parameter, namely the fold stiffness ratio, kb/kc,
which is the ratio of torsional spring constants associated with
virtual folds and creases (kb and kc respectively). These spring
constants can be experimentally measured. For the results
presented here, the torsional spring constants determined
experimentally by Silverberg et al for 120 lb paper were used.
These value were k 170 20 mN m radc

1=  - for creases
and k 6 N m radb

1= - for virtual folds [8].
The development of elastic energy during expansion or

contraction as determined through the use of virtual folds and
appropriate torsional springs can then be used to study the
bistability of folded origami structures. The fold energy is
given by the product of torsional spring potential and the
length of the fold. For each fold, the associated folding energy
is calculated and summed according to equation (16).

U a l

l

2

2 . 16

k

i

n

BD i BD AD i AD

k

i

n

d FD i

total 2
1

, ,0
2

, ,0
2

2
1

,
2

c

b

å

å

q q q q

y

= - + -

+

=

=

[ ( ) ( ) ]

( )

Figure 4. Accounting for panel bending by introducing virtual folds.
During contraction, deformation is facilitated by out-of-plane
bending of the triangular panels ABD and AED. The bending of
these panels is treated rigidly through the introduction of virtual
folding lines along FD and AF .¢ The folding angle (e.g. θBD) is the
dihedral angle between panels intersecting at fold line (e.g. BD).
Angles not shown for readability in print.

Figure 5. Characteristic fold angles as a function of rotation,
determined from the scalar product of their respective surface normal
vectors. Fold angles can be considered the angle between the facets
on either side of the fold line. The fold angle, ψFD, corresponds to
virtual fold lines FD and AF .¢ The virtual fold angle is initially and
terminally 180 degrees due to the unbent structure in the open and
closed configurations. The fold angles θBD and θAD of creases BD
(same as AE) and AD take their initial values due to the geometric
constraints of the structure in the open configuration. The negative
angles are caused by the intersection of virtual facets.
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The equilibrium position for the torsional spring potential
is assumed to be the open configuration, and is represented by
the subscript 0. The total elastic energy of the origami struc-
ture is determined from equation (16) and plotted as a func-
tion of rotation in figure 6 to investigate the bistability of the
structure during expansion and contraction.

Each 1/2kx2 term of equation (16) represents the energy
contribution from a single fold. The contributions from each
fold are summed first for each of n sides, then the energy of
folding each side is summed to attain the energy to fold the
entire structure. The scalar multiplier in front of each squared
term can be used as a reference to the fold that is represented
by that term. For example, a2k

BD i BD2 , ,0
2c q q-( ) gives the

elastic energy of both folds (due to the multiplier of 2) with
length a. As the structure has axial symmetry, XX i,q and XX i,y
will be the same for i = 1, 2, 3Kn. Changing the fold stiff-
ness ratio, kb/kc, scales the contributions from virtual folds

and creases. It is the relative contribution of these terms
which determines the stability of the open configuration, and
therefore the strength of snap-through bistability (figure 6(A)).
The results from equation (16) are shown in figure 6. The origami
structures have a maximum potential energy at a certain rotation
angle which corresponds to the snapping motion. The bistability
is more pronounced for higher aspect ratio polygonal prisms
(defined by larger λ values). Importantly, since the deformations
that occur are elastic, the system is able to repeatedly move
from one kinematical configuration to another through bi-stable
snapping motion. In physical models, the thickness of folded
layers prevents the system from accessing its co-planar, closed
configuration. Instead, a force balance is established resulting
in an equilibrium position at some nonzero height that can be
conceptually correlated to the closed configuration of the struc-
ture. For the structure to be bi-stable, the elastic energy of the
open and closed equilibrium configurations must be minimum
energy states of the transformation. The energy required to
produce the kinematically necessary deformations (i.e. panel
bending) is then the barrier energy that separates the two equi-
librium positions. It can be seen from figure 6(A) that bi-stable
behavior begins to occur at low values of λ near its minimum of
0.5. However as λ increases to its maximum, more deformation is
required and therefore the behavior is increasingly bi-stable. The
onset of bistability is a function of the fold stiffness ratio and the
origami structure parameters n, R, and λ. Since the material
properties dictate the fold stiffness ratio and we are free to specify
the structure parameters to fit our purposes, this structure serves
as a tunable bi-stable system created from a flat sheet.

The energy as a function of rotation can then be used to
determine the torque associated with holding the structure in a
certain configuration. This was accomplished using the force
energy relation in equation (17). The work required for each
rotational step is then given by equation (18). This can then
be related to the rotational and linear stiffness of the structure
by equations (19) and (20).

U
, 17t

a
= -

¶
¶

( )

W , 18t a= D ( )

K
W2

, 19rotational 2a
=

D( )
( )

K
W

H

2
. 20linear 2

=
D( )

( )

The rotational and linear stiffness of the structure during
contraction are shown in figure 7. Regions of negative stiffness
demonstrate the bistability of the structure, where a small per-
turbation carries the structure through a large displacement.

In summary, this origami pattern, based on the Kresling
pattern, demonstrates bi-stable expansion and contraction
facilitated by the buckling of thin panels. This structure can
be uniquely specified by the three parameters n, R and λ

which are respectively the number of sides of the basal
polygon, the circumradius of the basal polygon and the angle
ratio. Through these parameters and the selection of the fold

Figure 6. (A) Elastic energy contributions from creased folds and
virtual folds are plotted as a function of rotation angle. The total
elastic energy as determined by equation (16), is shown for λ equal
to 0.51, and the ratio of kb/kc leads to an origami structure stable
only in the expanded state. Here rotation angle increase corresponds
to contraction of the origami, and creased lines have folding energies
that are zero when in the open configuration. (B) The total elastic
energy from equation (16) is plotted as a function of rotation for
various λ to demonstrate that the potential energy barrier associated
with bistability is more pronounced for larger angle ratios.

7

Smart Mater. Struct. 26 (2017) 094007 A Pagano et al



stiffness ratio by material choice, the folding behavior of the
structure can be fully determined and exploited. As a
demonstrative example of the applications of this structure,
we present a case study wherein this origami pattern is used
for locomotion of a crawling robot.

5. Case study: crawling robot

We designed a simple robot which uses origami towers as
simple mechanisms which transform motor rotation to linear
motion enabling a crawling gait, similar to an earthworm (see

figures 8 and 9). Our origami robot design is capable of
crawling forward, and turning left and right due to the repe-
ated expansion/contraction of two internal origami towers
which can be actuated independently. Each origami tower is
constructed from the CP shown in figure 12(A). Here, n = 5
and λ = 6 for each building block, and a tower of 6 building
blocks is created by folding 6 connected rows of the pattern
shown in figure 1(A). These towers are supported by a folded
bellows structure which protects the origami towers, and
allows free rotation of moving components. This folded bel-
low is attached to 3D printed faceplates which hold the
motors and feet. Origami towers are connected to the face-
plates with a friction disk which protects the structure from
over rotation (rotation beyond the point where the tower is
fully open or closed) which would damage the paper origami
tower. Initially, the friction disk holds the front polygonal
face of the origami tower fixed so that the motor can rotate the
base of the tower to open or close the structure—motor angle
therefore gives the rotation angle, α, measured with respect to
the open configuration. When the tower is fully open or fully
closed, the friction disk will slip with continued motor rota-
tion, which prevents the motor from tearing the thin folded
structure. The motors are driven in one direction to expand
the tower and the opposite direction to contract it (the
direction of rotation resulting in expansion is determined by
the chirality of the tower). To prevent twisting of the structure
and enforce straight motion, the two internal origami towers
are designed to have opposite chirality as shown in figure 9.
Forward net locomotion is obtained during each expansion-
contraction cycle through anisotropic friction between the feet
and the ground surface which allows forward motion but
prevents back-slide.

Anisotropic friction is used by earthworms and snakes
for locomotion and has been adopted in other origami
inspired robots with similar gaits [9]. To realize this effect,

Figure 7. Rotational and linear stiffness as determined by
equations (19) and (20) plotted as a function of rotation. The dashed
line shows rotational stiffness and is plotted on the left axis (scaled
by 106) while the solid line shows linear stiffness and is plotted on
the right axis (scaled by 103). The upwards hook in linear stiffness is
caused by the residual restoring force in the creased fold-lines.

Figure 8. (A) Exploded view of CAD model. (1) Motors (2) Feet (3)
Rear faceplate (4) Origami bellow (cutaway for visibility) (5)
Origami towers (6) Front faceplate, torque-limiting coupling not
shown (7) Stop limits foot rotation. (B) CAD model side view,
colored for clarity. Photos shown in figure 9(C)/(D). Faceplates
produced with Viper SI SLA machine using Somos® WaterClear
resin.

Figure 9. Photos of crawling robot showing scaling and actuation
positions. (A) and (B) show large version in contracted and
expanded positions respectively. Transparent PET is used for the
bellow structure to show internal origami tower. Robot scaling can
be accomplished by simply changing the scale of the CP. (C) and (D)
show small crawling robot in contracted and expanded positions
respectively.
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each foot has two surfaces with different frictional coeffi-
cients. The feet are attached to the faceplate so that they may
rock back and forth so that either one of two surfaces is in
contact with the ground due to the intrinsic reaction torque at
the point of contact (figure 10). The front surface is smooth
and rounded plastic with a low coefficient of friction (acrylic
or Somos® WaterClear), while the back surface is a soft 10A
durometer rubber with a high coefficient of friction. When the
robot moves, the feet tilt forward between these faces so that
the plastic surface facilitates forward sliding and the rubber
surface prevents backslide as shown in figure 10.

The crawling gait cycle functions as follows (figure 9).
Motor rotation causes expansion of the internal towers which
opens the origami bellow body and slides the front feet for-
ward. The friction pads on the rear feet (nearest to the motors)
prevent backslide of the robot forcing it to expand in the
forward direction. The internal tower structures are then
contracted by turning the motors in the opposite direction.
This contraction causes the entire robot to shrink in length
causing the rear feet to rock onto the plastic surface then slide
forward to meet the front feet. In this stage of motion, the
friction pads on the front feet rock backward to engage with
the ground to prevent backslide of the front face of the robot.

Left and right turning are facilitated using two indepen-
dently driven origami towers mounted at the same height and
symmetric about the midplane of the robot (figure 11(A)). By
contracting the left tower and repeatedly expanding and
contracting the right tower, the robot is made to turn left as
shown in figure 11(B) and vice versa to turn right. During this
turning motion, the robot structure assumes the arc shape
shown in figure 11(B). While in this shape, the front and back

bellow faces are no longer parallel. Since the origami towers
are attached to the faceplates, and the origami structure
kinematically maintains a parallel relationship between its
polygonal faces during expansion and contraction, additional
bending freedom must be added to the origami tower pattern
to allow it to span and actuate the bellow structure while
turning. This bending freedom was added in the form of a
modification to the CP which is shown in figure 12(A) as
compared to figure 1(A). The addition of panels and cuts
between the rows/unit cells allow the towers to bend while
maintaining a parallel relationship between polygonal faces of
each unit cell. Additional folds provide bending freedom
while cuts are made to minimize paper layers in flat folded
state. Note that the analysis done in the previous sections
applies to a single building block of the origami tower. This
modification acts as a spherical hinge between the origami
structures previously defined, and is therefore not included in
the discussion of the structures themselves. The resulting
folded tower, including modifications, is shown in
figure 12(B) as a CAD model and paper versions in
figure 12(C) at different scales which are produced by simply
scaling the CP before folding. Arduino Uno is used to control
the motors for ‘forward’, ‘left’ and ‘right’ locomotion. The
specifications of the small and large robots are listed in
table 1.

A power balance model can provide insights to relate the
electrical properties of the motors to the mechanical proper-
ties of the external and internal origami structure. The input
electrical power (Pin) is related to the mechanical output
power (Pout) by the mechanical efficiency :h

P P , 21in outh = ( )

P T . 22in motor motorw= ( )

Figure 10. Still photos of foot showing anisotropic friction.
Switching between surfaces occurs due to intrinsic torque which
causes a rotation about the point of contact. The rounded smooth
surface on the front allows the foot to slide forward, but the rubber
protrusion in the rear of the foot prevents backslide. The extended
section acts as a lever increasing the normal force on the high friction
surface.

Figure 11. (A) Top view showing placement of origami towers with
opposite chirality in straight orientation. Top of paper bellow
removed for visibility. (B) Top view of turning motion. Left tower is
contracting, right tower is expanded. Note that the front right rocking
feet have flipped so that friction maintains this positon. While
turning, faceplates are not parallel.
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The motors’ rotational speed and torque are defined as:

T
T

T 23motor
stall

max
motor stall

w
w= - + ( )

Tstall and maxw are the stall toque and maximum rotational
speed. Both of which are determined from the factory spe-
cifications of a given motor listed in table 1. The output
mechanical power, P ,out is the average energy expended per
unit locomotion time:

P
E

t
24out

tot= å
D

( )

E mv k l W W
1

2

1

2
25tot

2
bellow

2
tower frictionå = + D + + ( )

where v is the robot average velocity, m its mass, kbellow its
linear stiffness of the bellow and lD its expansion (forward
stroke). The energy expression is the respective summation of
the robot’s kinetic energy (first term), the potential energy
stored in the external bellow (second term), the work done to
expand/contract the internal origami tower (third term), and
the friction dissipation work between the robot and the
ground (last term). Wtower can be directly related to the strain
energy of the internal bi-stable origami structure and its
expression is shown in equation (16). The power balance
model will be used to perform robot locomotion efficiency

studies and take advantage of the bi-stable behavior of the
origami structure to reduce the overall power consumption for
a given mechanical efficiency.

6. Summary

This work represents, to our knowledge, the first imple-
mentation of the concept of virtual folds to analyze panel
bending in snapping Kresling-like origami towers. We
demonstrate how this simple numerical scheme can be
derived to solve both the kinematics and the forces without
the need of computationally expensive finite element meth-
ods. Moreover, we show a new concept for linear actuation by
nesting the Kresling-like tower to achieve linear motion from
a motor fixed at the base. In addition to its use in robotics, this
concept can have applications in the design of deployable
booms. This manuscript presented the design and analysis of
a bi-stable origami structure and its use in actuating a
crawling robot gait. The crawling robot utilizes some of the
advantages of the bistability such as being stable at any
configuration, open, closed or bent during turning. This has
advantages in the power consumption and makes the open
loop locomotion control straight forward. However, there
exists additional opportunities to leverage the multi-stability.
This is the focus of future work and will be achieved in two
stages: (a) we will tune our current open loop controller such
that the motor rotates in multiples of the critical angle, where
this multiple is the number of bi-stable building blocks, and
(b) we will implement a control feedback loop. Both these
changes will improve the power efficiency through exploiting
the bistability of each of the building blocks.
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Figure 12. (A) Modified CP to provide bending freedom to internal
origami tower. Blue dashed lines are valley folds. Red solid lines are
mountain folds. Black lines and dots are through-cuts. Small cutout
circles at vertices prevent tearing of paper. Tabs are for gluing and
additional rows at the top and bottom are folded flat to provide a
polygonal face (B) CAD model of flexible origami tower. (C) Photos
of paper towers created from (A). Different sizes are shown to
demonstrate scalability of origami folded mechanisms.

Table 1. List of characteristic measurements of the robots shown in
figure 9. Lf length measured foot to foot.

Small Large

Mass (g) 30.46 136.04
Robot Length (mm) 85 150
Max Forward
Stroke (mm)

13 29

Forward Velocity
(mm s−1)

2.1 11.8

Motor Type DC Planetary
Gearmotor

Servo FS90R
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